Climate Change

Climate change reports.

Keynote address to the 2018 New Zealand Road Infrastructure Management conference on incorporating climate change considerations to asset management.
The road sector represents a significant asset to any country – both in terms of the physical cost to build it, and the social and economic benefits that it facilitates. Internationally accepted good practice is that the road asset should be appropriately managed through formal asset management techniques such as those laid out under the ISO55000 standard, the International Infrastructure Management Manual, or similar guidelines   While these standards and guidelines all permit the inclusion of climate change impacts into the asset management practices, there is little specific guidance on how to do so with the result being that many road authorities are still working in a business-as-usual mode.   Climate change, for whatever the cause, has the potential to be a serious disruptor to business-as-usual thinking for many of the most vulnerable countries in the world. The impacts of climate change are two-fold, with medium-long term changes in the average indicators (rainfall, temperature etc.) along with an increase in the occurrence of shock events such as large floods. With the past not being a good indicator of the future with regard to climate change, many of the asset management practices need to be refined to ready road authorities in advance of; during; and after climate change events.   This report describes asset management practices should be modified to prepare a road authority for climate change – ranging from modifications of high level policy statements; through to the maintenance of key assets. The key finding is that climate change is best integrated to asset management by being prepared for climate events, rather than through response plans. Not all of the recommended changes are applicable to all road authorities, and for some of the most vulnerable road networks it may be necessary to go beyond the level of effort recommended. However, application of the principles advocated here will ensure road authorities are prepared to address the challenges of climate change in managing their infrastructure.
Small Island Developing States (SIDS) are a group of countries located across the world in the Caribbean, Pacific, Africa, and Indian Ocean regions. They are all small in size, sparsely populated and geographically isolated, and their small economies are typically based on tourism, fisheries, agriculture, and small-scale manufacturing activities. SIDS are among the most exposed and vulnerable countries to natural disasters in the world, and climate change is expected to exacerbate future risks, threatening development progress. Because of their location, small size, and topography, SIDS are exposed to severe hazards, including cyclones, extreme winds, storms, earthquakes, tsunamis, and volcanic eruptions. Compared to other countries, SIDS also suffer very high economic losses when extreme events strike, with average annual losses ranging between 1 and 10 percent of gross domestic product (Figure 1). Climate change will not only exacerbate disaster risks, but also have long-term impacts such as sea level rise, changes in rainfall patterns, and more extreme temperatures, which also require adapted management. This report describes issues challenging SIDS, and how they can be addressed through asset management.
Presentation to the 2017 Transportation Research Board on the challenges and opportunities for low volume roads due to climate change.
There is an increasing evidence that the earth’s climate is changing with some of the changes attributable to transport infrastructure. Climate change can have impacts on road infrastructure. The direct impacts can be due to the effects of environment. Temperature can affect the aging of bitumen resulting in an increase in brittle failure of the surface seals that represent more than 90% of the rural sealed roads in Australia. Further, rainfall changes can alter moisture balances and influence pavement deterioration. Brittle failure of the bitumen causes the surface to crack, with a consequent loss of waterproofing of the surface seal. The result is that surface water will enter the pavement causing potholing and will cause rapid loss of surface condition. More frequent reseal treatments will overcome the problem, but this is at a higher cost to road agencies. Road infrastructure is a long-lived investment.  An understanding of the expected impacts of future climate change by road designers, asset managers and planners, could produce considerable cost savings in the long term. This research aims to provide an assessment of likely effects on climate change for South East Queensland region in the next 90 years, and further identify and assess the likely effects of climate change on road pavement. It can be concluded that, climate change in South East Queensland does play a role in lower deterioration rates. The findings suggest that decreasing rainfall (decreasing TMI) will slow flexible pavement deterioration. However, increases in temperature are likely to cause materials to expand to affect pavement deterioration rates.
Design guide giving a variety of coastal protection solution for Pacific Island countries.
Steel bridges comprise approximately 20% of New Zealand state highway bridges and, with the inclusion of the Auckland Harbour Bridge, represent an asset replacement value of over $2 billion. Protective coatings are often less than one third of a millimetre in thickness and are required to protect highly stressed steel from corrosion in often aggressive marine environments. Historically the full potential life of these coatings has not been achieved due to less than optimum coating selection, specification, application or maintenance. The ultimate objective of this guide is to optimise the long term capital and maintenance costs of steel structures through the implementation of best practice in the selection, application and maintenance of protective coatings on steel structures. Protective coatings for steel bridges generally provides an overview of the key processes and considerations with references to other key standards and documents. It is provided to inform and assist the wider industry in achieving best practice. However, it is also strongly recommended that specialists with skills and experience in protective coatings are used to ensure the accurate interpretation and application of this guide and various reference documents on individual projects.
This guide provides information and resources to help transportation management, operations, and maintenance staff incorporate climate change into their planning and ongoing activities. It is intended for practitioners involved in the day-to-day management, operations, and maintenance of surface transportation systems at State and local agencies. The guide assists State departments of transportation (DOTs) and other transportation agencies in understanding the risks that climate change poses and actions that can help reduce those risks. Incorporating climate change considerations into how agencies plan and execute their transportation system management and operations (TSMO) and maintenance programs helps the agency become more resilient to unanticipated shocks to the system. Adjustments to TSMO and maintenance programs—ranging from minor to major changes—can help to minimize the current and future risks to effective TSMO and maintenance.
Presentation showing challenges for coastal protection of transport infrastructure in Kiribati.
Short presentation from 2014 World Bank forum on climate adaptation and roads. Emphasizes that you need to look at things with a network vulnerability perspective and that it is no use doing major improvements to drainage without routine maintenance.
Climate change poses a critical threat to future development, particularly in areas where poverty is widespread and key assets such as infrastructure are underdeveloped for even current needs. The focus of this study includes ten geographically and economically diverse countries and the impact of 54 distinct AR4 Global Circulation Model (GCM) scenarios of future climate change on their existing road networks. The analysis is completed using a software tool which uses engineering and materials-based stressor-response functions to determine the impact of climate on maintenance, repair and construction. This study represents an update to a previous study conducted by the authors in 2011. The key updates include methodological advances, policy-oriented results presentation and the use of a new software tool developed by the authors. For nine out of ten countries in the study, pro-active adaptation measures result in lower fiscal costs and higher connectivity rates as early as 2025. The results through 2100 are presented and the costs of climate change present clear findings for these countries in terms of road maintenance, construction, and adaptation policy. In rural areas, particularly those in low-income countries, roads represent a lifeline for economic and agricultural livelihood, as well as a number of indirect benefits including access to healthcare, education, credit, political participation, and more. Roads may be sparse through geographic locations, making each road critical. Extreme events pose a costly hazard to roads in terms of degradation, necessary maintenance, and potential decrease in lifespan due to climatic impacts. Climate change poses costly impacts in terms of maintenance, repairs and lost connectivity; yet many of these impacts can be mitigated and avoided by pro-active adaptation measures. It is a crucial consideration for protecting current and future infrastructure investments and the economic, social, and other functions they serve. The Infrastructure Planning Support System (IPSS) is a software tool designed to quantify the impacts of both extreme events and incremental climatic changes on road infrastructure in any geographic location throughout the world. The system identifies the financial cost on a yearly basis through 2100 and allows users to compare proactive adaptation measures and reactive non-adaptation measures. IPSS compares a ‘no climate change’ scenario as a baseline to provide information on the ‘regret’ that may occur if a predicted outcome of climate change model does not manifest as projected. Infrastructure impacts are determined based on civil engineering materials research, field studies of actual impacts on roads and buildings, and additional data. These resources are combined into stressor-response equations which are implemented to provide specific cost estimates. Additionally, the program can be customized to a specific location where data is available on stressor-response impacts on the infrastructure elements being analyzed. This paper focuses on the methodology and application of the IPSS tool to countries representing a range of incomes including low-income, middle, and upper income countries. The IPSS tool is used to compare costs of adaptation and opportunity cost for each country. The results indicate that higher income countries face significant dollar costs due to the extensive road networks, with very high costs in Japan and Italy, in particular. Bolivia, Ethiopia, and Cameroon all show extremely high advantages to adaptation, yet the costs required to simply maintain existing networks are equivalent to funding equal to doubling or tripling the existing paved road inventory. These results can help policy makers at the national and international levels decide where and how to invest; and show that climate change represents a significant and urgent threat to transportation throughout the world.
Climate change scenarios for many Sub-Saharan African countries including Ghana indicate that temperatures will increase while rainfall will either increase or decrease. The potential impact of climate change on economic systems is well-known. However, little has been done to assess its economic impact on road infrastructure. This work assesses the economic impact of climate change on road infrastructure using the stressor-response methodology. Our analysis indicates that it will cumulatively (2020-2100) cost Ghana US$473 million to maintain and repair damages caused to existing roads as a result of climate change (no adapt scenario). However, if the country adapts the designing and construction of new road infrastructure expected to occur over the asset’s lifespan (adapt scenario), the total cumulative cost will increase to US$678.47 million. The paper also provides decadal and average annual costs up to the year 2100 for the ten regions through the potential impacts of 54 distinct potential climate scenarios.
The African Development Bank has called for $40 Billion USD per year over the coming decades to be provided to African countries to address development issues directly related to climate change. The current study addresses a key component of these issues, the effect of climate change on the road infrastructure of Malawi, Mozambique, and Zambia, all located within the Zambezi river basin. The study incorporates a stressor-response approach to estimate the effects of projected precipitation, temperature, and flooding changes on the paved and unpaved road infrastructure of these countries. The paper highlights the result of running 425 climate scenarios for each road type and policy option from 2010 – 2050. Based on a resulting database of over 1.4 million data points, the three southern African countries are facing a potential $596 million price tag based on median climate scenarios to maintain and repair roads as a result of damages directly related to temperature and precipitation changes from potential climate change through 2050.
This report provides a general EU-wide outlook about the future vulnerability of transport to climate change with a focus on the road and rail transport and their infrastructures. It also analyses some specific adaptations measures, illustrating key issues to be considered for policy making. It represents a first JRC/IPTS assessment of future impacts of climate change on the transport system in Europe, which has been conducted in the framework of the JRC PESETAII project.
Report describing effects of climate change on asphalt, concrete, modular and unbound pavements, and the expected impacts from climate change.