• 1.png
  • 2.png
  • 3.jpg
  • 4.jpg
  • 5.png
  • 6a.png
  • 7.png
  • 8.png
  • 9.png
  • 10.png
  • 11.png
  • 12.JPG
  • 13.png
  • 14.png
  • 15.png
  • 16.png
  • 17.png
  • 18.png

2011 - Finland - Forecasting Road Condition

2011 - Finland - Forecasting Road Condition

2011 - Finland - Forecasting Road Condition

Description

Forecasting road condition after maintenance can help in better road maintenance planning. As road administrations annually collect and store road-related data, data-driven methods can be used in determining forecasting models that result in improved accuracy. In this paper, we compare the prediction models identi fied by experts and currently used in road administration with simple data-driven prediction models, and parsimonious models based on a input selection algorithm. Furthermore, non-linear prediction using radial basis function networks is performed. We estimate and validate the prediction models with a database containing data of over two million road segments.

Forecasting road condition after maintenance can help in better road maintenance planning. As road administrations annually collect and store road-related data, data-driven methods can be used in determining forecasting models that result in improved accuracy. In this paper, we compare the prediction models identi fied by experts and currently used in road administration with simple data-driven prediction models, and parsimonious models based on a input selection algorithm. Furthermore, non-linear prediction using radial basis function networks is performed. We estimate and validate the prediction models with a database containing data of over two million road segments.

Published on
25 June 2019
Last Updated Date
21-03-2018
File Size
242.48 KB
File Type
application/pdf
Hits
1471 Hits
Download
1879 times
×